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Abstract

A theoretical model is proposed in this work for an evaluation of the specific heat and Debye temperature of low-dimensional mate-
rials. In the model, the allowed discrete vibration modes in the confined direction(s) are first obtained by solving the elastic vibration
equation. The acoustic specific heat is then calculated by summing over these discrete, excited, phonon modes and integrated over
the continuous wave numbers in the unconfined directions. An effective Debye temperature is then defined as the one appearing in
the conventional Debye model that gives a same value for the specific heat. It is found that the so-defined Debye temperature of the
mixed polarization associated with nanowires is about half the longitudinal Debye temperature of bulk materials at room temperature.
This agrees with the experimental observations. Those of both the dilatational and flexural polarizations associated with the thin films on
the other hand are about 28% smaller than the bulk longitudinal Debye temperature. When the temperature is so low that there are only
a few phonon modes excited, these low-dimensional materials show two-dimensional behavior, excluding the flexural polarization of the
thin films, which shows one-dimensional behavior instead due to its parabolic dispersion relation at small dimensionless wave numbers.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Low-dimensional materials such as nanowire and thin-
film materials have attracted a lot of attention recently
because they provide desirable thermal/electrical properties
for possible improvements of IC thermal management, and
also because remarkable advances in the fabrication tech-
nology nowadays have been made. For example, it is well
known that the applications of a thermoelectric cooler
are limited by its cooling efficiency, which in turn is limited
by the material properties. The thermoelectric property of
a material is usually characterized by its figure of merit,
Z = S2r/k, where S is the Seebeck coefficient, r is the elec-
tric conductivity, and k is the thermal conductivity [1]. The
commonly known thermoelectric materials have ZT values
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between about 0.6 and 1.0 at room temperature T = 300 K.
Recently, it has been found experimentally as well as theo-
retically [2–4] that low-dimensional materials such as quan-
tum wells, quantum wires, quantum dots, and superlattice
structures have ZT values much larger than their bulk
counterparts. The increase in ZT values is attributed to
the changed band structures, the modified dispersion rela-
tions, and the enhanced boundary scattering due to the size
confinement effects [5–7].

In addition to the thermal and electric conductivities,
the specific heat and the Debye temperature associated
with these low-dimensional materials are also found differ-
ent from the bulk values. Dames et al. [8] measured the
phonon specific heat of the cold-pressed titanium dioxide
nanotubes with typical dimensions of 500–1000 nm in
length, 9 nm in outside diameter, and 2.5 nm in wall thick-
ness. The temperature-dependence of the measured specific
heat is found to shift from 3D to 2D behavior as the aver-
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age phonon mean free path becomes comparable to the
wall thickness. A second transition from 2D to 1D behav-
ior appears when the average phonon mean free path
becomes comparable to the nanotube circumference. Nee-
leshwar et al. [9] investigated the size effect on magnetic
susceptibility and heat capacity of CdSe quantum dots. A
shrinkage of the lattice constants was observed. The mag-
nitude of magnetic susceptibility is larger for smaller parti-
cles at all temperatures. And most of all, a Debye
temperature that is really half the bulk value (139 K) is
found based on the measurements of specific heats. Comsa
et al. [10] measured the specific heats of Pd nanoparticles,
compared to the predictions from a homogeneous elastic
vibration theory. It was found that the sound speed
employed in the theory must be adjusted in order to fit
the measurements, resulting in much smaller Debye tem-
peratures at low temperatures. A size dependence of the
Debye temperature was actually also observed in many
other metal nanoparticles [10].

Wang et al. [11] employed an elastic continuum model
for fine nanoparticles to investigate theoretically the size
effect on the specific heat, which counts contributions from
interior as well as surface atoms. A dimensionless variable,
inversely proportional to the sphere volume and the square
of temperature, was proposed to characterize the effect of
particle size and temperature. Prasher and Phelan [12,13]
performed a similar analysis on thin solid films. An empha-
sis was put on the difference between discrete available
phonon modes due to the thin film thickness and the inte-
gration approximation. It was found then the size effects
are most important at cryogenic temperatures. The dimen-
sionless parameter proposed for characterization is inver-
sely proportional to temperature and film thickness.
These analyses [11–13] nonetheless all adopted an approx-
imate linear phonon dispersion relation, namely the Debye
model or a constant phonon group velocity. As early as
1921, Schäfer [14] pointed out a discrete spectrum of eigen-
frequencies exists due to the finite size. Baltes and Hilf [15]
and Lautenschläger [16] employed such a discrete spectrum
of scalar vibrations of metal spherical particles in calculat-
ing the heat capacity for lead grains. The existence of a
peak in the specific heat enhancement was observed and
explained. A weak size dependence of an ‘‘effective” Debye
temperature was found as well.

Most of the previous work has been done for approxi-
mately spherical particles of the dimension on the order
of a few nanometers and focused on the size dependence
of the heat capacity. Few investigated nanowires and thin
films. Moreover, a size dependence of the Debye tempera-
ture has also been noticed [8–10,16–18] and worth under-
standing. Recently, Yang et al. [19] induced the results of
Lindemann’s criterion [20] for melting, Mott’s equation
[21] and the Debye model. The size dependence of Debye
temperatures of nanocrystals is obtained based on a size-
dependent root of mean square amplitude model. Intricate
models nonetheless are needed in order to distinguish the
contributions of surface and interior atoms of nanocrys-
tals. In the present paper, we instead aim at building a
theoretical model that is capable of taking the size confine-
ment effect directly into the calculations of the heat capac-
ity of nanowires and thin films. Proper (effective) Debye
temperatures suitable for nanocrystals will be defined and
discussed. The size effect and temperature-dependence will
be both explored. The rest of this paper is arranged as fol-
lows. The conventional Debye models for one-, two-, and
three-dimensional (bulk) materials will be first reviewed
in Section 2.1. The proposed models for nanowires and
thin films are given in Section 2.2. The theoretical results
of nanowires will be presented and discussed in Section 3.
Followed are those of thin films in Section 4. Conclusions
will be given at last in Section 5.

2. Mathematical models

2.1. Conventional Debye model

We first consider bulk crystalline solids which possess a
linear phonon dispersion relation, x = qV, where x, q, and
V are the phonon frequency, wave number, and group
velocity respectively. The phonon internal energy in the
conventional i-dimensional (i = 1, 2, or 3) Debye model,
under the integration approximation, is calculated as [22]

UiD ¼
1

ð2pÞi
�
Z

n0�hxd~qiD ð1Þ

where n0 is the Bose–Einstein distribution, namely

n0ðx; T Þ ¼ ðexpð�hx=kBT Þ � 1Þ�1 ð2Þ
(⁄ and kB are the Planck constant divided by 2p and the
Boltzmann constant). By taking derivative with respective
to temperature and employing the linear dispersion rela-
tion, one obtains the i-dimensional specific heat at constant
volume for one polarization as follows:

CV;3D ¼
kBq3

max

6p2
� F 3

hD

T

� �
ðper unit volumeÞ ð3Þ

CV;2D ¼
kBq2

max

4p
� F 2

hD

T

� �
ðper unit areaÞ ð4Þ

CV;1D ¼
kBqmax

p
� F 1

hD

T

� �
ðper unit lengthÞ ð5Þ

where hD = ⁄xmax/kB is the bulk Debye temperature,
xmax = qmaxV, and qmax is the maximum or cutoff wave
number. The function Fi(z) is defined as

F iðzÞ ¼ i � z�i �
Z z

0

xiþ1ex

ðex � 1Þ2
dx ð6Þ

and is normalized by Fi(0)=1. Obviously Fi (and thus
CV,iD) is approximately proportional to Ti at extremely
low temperatures and this is characterized as the i-dimen-
sional behavior. It must be mentioned herein although
optical phonons also make contributions to specific heat,
only acoustic phonons are considered in the present inves-
tigation and it is the acoustic specific heats that will be used
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later to define the effective Debye temperatures of low-
dimensional materials.

2.2. Low-dimensional Debye model

When low-dimensional materials such as films and
nanowires are considered, the finite size effect generates a
discrete phonon spectrum in the confined dimension(s).
Infinitely many and discrete phonon vibration modes for
a given plane (films) or axial (nanowires) wave component
are thus resulted [23,24]. In this work, the size confinement
effect is taken into consideration by adopting such confined
dispersion relations. The integral approximation is none-
theless made in the unconfined directions. The phonon
internal energy therefore becomes

Uwire ¼
X

m

1

2p

Z
n0�hxmdqx ðper unit lengthÞ ð7Þ

for nanowires (qx is the axial wave component) and

U film ¼
X

m

1

ð2pÞ2
Z
ðn0�hxmÞ

� ð2pq2DÞdq2D ðper unit areaÞ ð8Þ

for films (q2D is the plane wave number), where the summa-
tion is done over the excited discrete modes in the confined
direction(s). The specific heats are next obtained by taking
derivatives of Eqs. (7) and (8) with respect to temperature
T. The results can be arranged as follows

CV;wire ¼
kB

pa

X
m

Z qmaxa

0

� x2
mexm

ðexm � 1Þ2
dðqxaÞ ðper unit lengthÞ ð9Þ

and

CV;film ¼
kB

2pa2

X
m

Z qmaxa

0

x2
mexm

ðexm � 1Þ2

�ðq2DaÞdðq2DaÞ ðper unit areaÞ ð10Þ

where xm = ⁄xm/kBT is the dimensionless frequency of the
mth excited phonon mode and a is the radius of the nano-
wires or the thickness of the thin films. As long as the dis-
crete spectra of phonons are known, one can now compute
the specific heats of nanowires and thin films according to
the above two equations.

To define an ‘‘effective” Debye temperature for the low-
dimensional materials, we first pretend that these low-
dimensional materials, like their bulk counterparts, have
a single linear phonon dispersion relation and that the inte-
gration approximation is applicable in all directions.
Therefore Eqs. (7) and (8) can be further approximated as

Uwire �
a

ð2pÞ2
�
Z Z

n0�hxdqxdqr ð11Þ
and

U film �
a

ð2pÞ3
�
Z Z

ðn0�hxÞð2pq2DÞdq2Ddqz ð12Þ

In particular, because only axisymmetric phonon vibration
modes in nanowires will be investigated later, the integra-
tion in Eq. (11) is performed over x and r directions only.
By substituting the pretended linear phonon dispersion
relation into Eqs. (11) and (12) and performing derivatives,
one obtains

CV;wire ¼
kBq2

maxa
4p

� F 2

hD;wire

T

� �
ðper unit lengthÞ ð13Þ

and

CV;film ¼
kBq3

maxa
6p2

� F 3

hD;film

T

� �
ðper unit areaÞ ð14Þ

where hD,wire and hD,film are the Debye temperatures asso-
ciated with the pretended linear dispersion relation. We
are now ready to define the effective Debye temperatures
of low-dimensional materials as follows. The specific heat
is first computed based on Eqs. (9) and (10) and on the dis-
crete phonon spectra. The parameter hD,wire or hD,film is
then adjusted until Eqs. (13) or (14) is fitted to the com-
puted specific heat. The resulting hD,wire or hD,film is hereaf-
ter defined as the desired effective Debye temperature.
3. Nanowires

3.1. Phonon spectrum

In this section, we attempt to investigate the size effect
on the specific heat and Debye temperature of nanowires.
The acoustic modes in an isotropic continuum material
can be obtained by solving the lattice displacement
equation,

o2ui

ot2
¼ s2

tr2ui þ ðs2
l � s2

t Þ
o2uj

oxioxj
ð15Þ

where ui is the lattice displacement, and sl and st are the
bulk longitudinal and transverse sound speeds. In the case
of circular nanowires, axisymmetric vibration modes have
been reported [23,24]. Two polarizations are involved.
One of them is purely transverse (with only azimuthal com-
ponent of amplitude for waves propagating in the axial
direction) and its dispersion relation is given by

J 0ðqhaÞ � 2

qha
J 1ðqhaÞ ¼ 0 ð16aÞ

x2 ¼ s2
t ðq2

x þ q2
hÞ ð16bÞ

The other one is a mixed mode of longitudinal and trans-
verse polarizations. Its dispersion relation is determined by
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4q2
xq2

l

ðqtaÞJ 0ðqtaÞ
J 1ðqtaÞ

� 2q2
l ðq2

x þ q2
t Þ

þ ðq2
x � q2

t Þ
2 ðqlaÞJ 0ðqlaÞ

J 1ðqlaÞ
¼ 0 ð17aÞ

x2 ¼ s2
l ðq2

x þ q2
l Þ ¼ s2

t ðq2
x þ q2

t Þ ð17bÞ

where J0 and J1 are the Bessel functions of zeroth and first
order. Both sets of equations, Eqs. (16ab) and (17ab), are
suitable for free-stranding nanowires and have infinitely
many and discrete solutions (ql,qt) for a given wave number
qx as illustrated in Fig. 1a and b for a silicon nanowire
(sl = 8.47 km/s, st = 5.34 km/, and qmax = 11.4 nm�1). As
seen, the spectra are nonlinear, especially at smaller values
of qxa. It implies stronger size effect for finer wires. More-
over, the smaller the radius, the larger the energy gaps be-
tween adjacent modes for a given qxa are and consequently
the less important the higher modes are.
3.2. Specific heat and Debye temperature

Before we present the computational results of the spe-
cific heat based on Eq. (9) and the spectra in Fig. 1, atten-
tion must be paid to the fact that the number of discrete
Fig. 1. The eigenmodes of the transverse polarization (a) and mixed
polarization (b) of a silicon nanowire. The dotted line is the linear
dispersion relation of the bulk longitudinal polarization (the constant
group velocity is sl).
modes that can be excited is limited by the material size
[12,13]. In the present study, it is determined in the follow-
ing way. First, for a given wave number qx, the number of
allowed discrete modes is estimated to be

mðqxÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

max � q2
x

q
=ð2p=aÞ

h i
þ 1 ð18Þ

where [x] is the Gauss notation that gives the largest integer
less than x. The number one in Eq. (18) counts the mode
qr = 0. The total number of allowed modes per unit length
is therefore equal to

Nd ¼
1

2p

Z qmax

�qmax

mðqxÞdqx ð19Þ

A detailed examination finds that Nd is slightly different
from its continuous counterpart,

N c ¼
a

ð2pÞ2
Z Z

q2
rþq2

x6q2
max

dqrdqx ¼
q2

maxa
4p

ð20Þ

A correction factor e = Nc/Nd is therefore multiplied to
CV,wire before it is substituted into Eq. (13) for searching
the root hD,wire. The factor is about 1.02 when a = 10 nm
and approaches to one as the wire radius increases.

Shown in Fig. 2 is the so calculated specific heat for a
silicone wire of diameter 20 nm. Note the specific heat
has been divided by the cross-sectional area pa2 and there-
fore has a unit of J/cm3 K. It is seen the specific heat of the
nanowire has a 2D behavior at intermediate temperatures
but 1D behavior at very low temperatures. An examination
shows when the temperature is very low, only the two low-
est phonon modes are excited (or have significant phonon
populations). The value of specific heat is mainly contrib-
uted by the first mode and slightly modified by the second
one. This situation was also noticed by Baltes and Hilf [15].
The summation in Eq. (9) therefore plays no role, resulting
in 1D behavior. Finally, the values of specific heat
Fig. 2. The specific heat calculated based on Eq. (9) and the discrete
phonon spectra for a silicon nanowire of diameter 20 nm. Symbols s and
M represent the mixed and transverse polarizations. The dotted line is the
limiting value kBq2

max=4p2ae.



Fig. 4. The size effect on the transition temperatures. Symbols s and M
represent the mixed and transverse polarizations. Solid symbols are T2 and
open symbols are T1.

Fig. 5. The size effect on the asymptotic effective Debye temperatures
normalized by the bulk longitudinal or transverse Debye temperature.
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approach to the limiting value, kBq2
max=4p2ae, at high tem-

peratures as expected.
The effective Debye temperature solved from Eq. (13) is

shown in Fig. 3. It is seen that the effective Debye temper-
ature is nearly constant at intermediate and high tempera-
tures but drops like T1/2 at low temperatures. Because the
specific heat shows 1D behavior at low temperatures as
seen in Fig. 2, we also try to fit the calculated specific heat
by Eq. (5). The resulting Debye temperature is denoted as
hD,1D, and also shown in Fig. 3. As seen, the ‘‘1D effective
Debye temperature” is nearly constant at low temperatures
and drops like T�1 at high temperatures. The non-con-
stancy of either hD,wire or hD,1D arises from the influence
of the number of the phonon modes that can be excited
at a given temperature and a given diameter, and implies
neither one is suitable to the whole range of temperatures.

The transition of the specific heat from 1D to 2D behav-
ior is observed for all wire radii investigated herein. The
only difference is the temperature that the transition occurs
decreases with increasing wire radius. This is because high
modes contribute relatively less for finer wires as men-
tioned before. We thus define the transition temperature
T1 (T2) as the temperature at which hD,1D (hD,wire) has
dropped to 99% of its asymptotic value as temperature
increases (decreases). The size effects on the transition tem-
peratures as well as on the asymptotic effective Debye tem-
peratures are then shown in Figs. 4 and 5. It is seen the
transition temperatures are inversely proportional to the
wire radius. This is probably because the total number of
available phonon modes is proportional to the wire radius
as seen from Eq. (20). On the other hand, it is also found
that the value of the specific heat (per unit volume)
decreases with increasing wire radius. A further examina-
tion finds (see Fig. 6) that it is inversely proportional to
the square of the wire radius at low temperatures (1D
regime) and to the wire radius at intermediate temperatures
(2D regime). The latter can be easily explained by Eq. (13)
and the former must be understood from Eq. (5).
Fig. 3. The Debye temperatures obtained by solving Eqs. (5) and (13).
The dotted lines are the bulk longitudinal and transverse Debye
temperatures. Symbols s and M represent the mixed and transverse
polarizations.

Fig. 6. The size dependence of the specific heats of the mixed (circle) and
transverse (triangle) polarizations at T = 0.1 K (open symbols) and
T = 10 K (solid symbols).
Finally, Fig. 5 shows the asymptotic effective Debye
temperatures are nearly independent of the wire radius.
The hD,1D of the mixed polarization is only slightly less
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than the bulk longitudinal one ðhL
D;bulk ¼ 737:5 KÞ. This is

because the first (lowest) phonon mode in Fig. 1b is dom-
inant at low temperatures and has a group velocity close
to bulk longitudinal sound speed (sl) at small dimensionless
wave numbers qxa. The hD,wire of the mixed polarization
nonetheless is only about half the bulk longitudinal Debye
temperature. This is attributed to the influence of higher
modes that have much smaller group velocities. In fact, a
similar result is obtained when different values for sl, st

and qmax are used for different materials as long as these
materials are made into nanowires. Although the titanim
dioxide nanotubes investigated by Dames et al. [8] are hol-
low, they found a Debye temperature of 260 K, which is
exactly half of the bulk counterpart (520 K), agreeing with
the prediction herein. On the other hand, both hD,1D and
hD,wire for the transverse polarization remain close to the
bulk transverse Debye temperature ðhT

D;bulk ¼ 465 KÞ.
Finally, it must be emphasized again that in the present

study only axisymmetric phonon modes are considered. In
other words, the degree of freedom in the azimuthal direc-
tion is not taken into consideration. Therefore, if one con-
siders the cases in which the mean free path of phonons is
comparable to the wire radius but still much less than the
circumference, i.e. the confinement effect in the azimuthal
direction is not significant, the transition from 2D behavior
to 1D behavior mentioned above should be actually a tran-
sition from 3D to 2D behavior, corresponding to the first
transition observed by Dames et al. [8].
4. Thin films

4.1. Phonon spectrum

The confined phonon dispersion relation associated with
thin films can be also obtained by solving Eq. (15). As far
as free-standing thin films are concerned, the normal mode
analysis [23] shows there are three possible polarizations -
the shear waves, the dilatational waves, and the flexural
waves. The dispersion relation of the transverse shear
waves is determined by

x2
n ¼ s2

t ðq2
z;n þ q2

2DÞ ð21Þ

where qz,n = np/a is the quantized wave vector in the thick-
ness (z)-direction and n is any integer. The dispersion rela-
tions for the other two mixed polarizations are

x2 ¼ s2
l ðq2

l þ q2
2DÞ ¼ s2

t ðq2
t þ q2

2DÞ ð22aÞ
tanðqta=2Þ
tanðqla=aÞ ¼ �

4q2
2Dqlqt

ðq2
t � q2

2DÞ
2

ð22bÞ

for the dilatational waves, and

x2 ¼ s2
l ðq2

l þ q2
2DÞ ¼ s2

t ðq2
t þ q2

2DÞ ð23aÞ
tanðqla=2Þ
tanðqta=2Þ ¼ �

4q2
2Dqlqt

ðq2
t � q2

2DÞ
2

ð23bÞ
for the flexural waves. Solutions of Eqs. (21), (22ab), and
(23ab) are all infinitely many and discrete as illustrated
by silicon thin films in Fig. 7a–c. The first mode of dilata-
tional (shear) waves has a group velocity close to the bulk
longitudinal (transverse) sound speed at small dimension-
less wave numbers, q2Da. The group velocity of the flexural
waves nonetheless vanishes at q2D = 0 (Fig. 7c). The disper-
sion relation is actually parabolic near the origin. For all
three polarizations, the larger the thickness of the film,
the smaller the energy gaps between adjacent modes for a
given q2Da are.
4.2. Specific heat and Debye temperature

Similar to the nanowire cases, a correction factor e is
also needed in the thin-film cases to compensate the differ-
ence between the discreteness and the continuity. For a
given plane wave number q2D, the number of allowed dis-
crete modes is

mðq2DÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

max � q2
2D

q
=ð2p=aÞ

� �
þ 1 ð24Þ

and the total number per unit area is

Nd ¼
1

ð2pÞ2
Z qmax

0

mðq2DÞð2pq2DÞdq2D ð25Þ

The continuous one on the other hand is

N c ¼
a

ð2pÞ3
� 4p

3
q3

max ð26Þ

The correction factor e = Nc/Nd is about 0.99 when the film
thickness is 20 nm and it approaches gradually to one as
the film thickness increases.

Fig. 8 shows the specific heats of a silicon thin film of
thickness 10 nm. All polarizations show 3D behavior at
temperatures approximately beyond 10 K, and have values
of specific heats close to the limiting one ðkBq3

max=6p2eÞ at
high temperatures. At low temperatures, both dilatational
and shear waves show 2D behavior. The transition arises
again from the fact that only a few phonon modes are
excited at such low temperatures and consequently the
summation in Eq. (10) becomes functionless. The specific
heat of the flexural waves, nonetheless, is linearly depen-
dent on the temperature (1D behavior) at low tempera-
tures. As mentioned before, the first mode of the flexural
waves has a parabolic, instead of linear, dispersion relation
at small dimensionless wave numbers (Fig. 7c). This causes
a reduction by one in the power index of the temperature-
dependence of specific heat. The one-dimensional behavior
is therefore resulted. The total specific heat (a sum of spe-
cific heats of all three polarizations) is presented and com-
pared with the bulk counterpart in Fig. 9. The deviation is
obvious at low temperatures where size effect is strong. At
last, it is also found (not shown herein) the specific heats
per unit volume of all polarization are almost independent
of the film thickness at high temperatures as suggested by



Fig. 7. The eigenmodes of the shear waves (a), the dilatational waves (b), and the flexural waves (c) of a silicon thin film.

Fig. 8. The specific heat calculated based on Eq. (10) and the discrete
spectra for a silicon thin film of thickness 10 nm. Symbols h, M, and s

represent the dilatational, flexural, and shear waves, respectively. The
dotted line is the limiting value kBq3

max=6p2e.

Fig. 9. The total specific heat of all three polarizations for silicon thin
films of thickness 10 nm (open symbols) and 50 nm (solid symbols). The
dash dotted line is the bulk result.
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Eq. (14). The size dependences of them at low temperatures
are nonetheless different. The specific heats of the dilata-
tional and shear waves are inversely proportional to the
film thickness while that of the flexural waves is inversely
proportional to the square of the film thickness. The for-
mer is easily seen from Eq. (4). The latter can be explained
by performing the integration in Eq. (10) under the
assumption of a parabolic phonon dispersion relation
(xa) = c(q2Da)2, where c is some constant. These size
dependences are illustrated in Fig. 10, in which the specific
heat against the film thickness at 0.1 K is presented.

Shown in Fig. 11 are the effective Debye temperatures
solved from Eq. (14). It is seen all three effective Debye



Fig. 10. The size dependence of the specific heats of dilatational (h),
flexural (M), and shear (s) waves at 0.1 K.
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temperatures are nearly constant beyond 100 K, but drop
quickly at low temperatures. To better describe the low-
temperature behavior, a ‘‘2D Debye temperature”, denoted
by hD,2D, is defined in a similar way by taking advantage of
Eq. (4) for shear as well as dilatational waves. The results
are also shown in Fig. 11a and b. Without surprise, the
Fig. 11. The effective Debye temperature associated with the shear waves (a), t
thickness 10 nm (open symbols) and 50 nm (solid symbols). The dotted and
temperatures.
‘‘2D Debye temperatures” of dilatational and shear waves
remain nearly constant at low temperatures and agree with
hL

D;bulk and hT
D;bulk respectively. They decrease with increas-

ing temperature at intermediate temperatures nonetheless.
The power index associated with this decrease is close to
�5/12. Because the flexural waves do not possess such
2D behavior, there exists no corresponding 2D Debye tem-
perature in Fig. 11c.

To define the transition temperatures T1 and T2, we
notice the oscillations appearing in the effective Debye tem-
perature of the dilatational waves. We thus in this subsec-
tion define T2 associated with the dilatational waves as the
temperature where the local maximum of hD,film appears.
The size dependence of the transition temperatures is then
shown in Fig. 12. They are seen both inversely proportional
to the film thickness, similar to those observed in nanowire
cases.

The asymptotic values of the effective and 2D Debye
temperatures against the film thickness are shown in
Fig. 13. The Debye temperatures associated with the shear
waves show little difference from the bulk transverse one.
However, the effective Debye temperatures of the mixed
polarizations are about 28% less than the bulk longitudinal
Debye temperature.
he dilatational waves (b), and the flexural waves (c) of a silicon thin film of
dotted dash lines indicate the bulk longitudinal and transverse Debye



Fig. 12. The transition temperatures against the film thickness. Symbols
h, M, and s represent the dilatational, flexural, and shear waves,
respectively. Solid symbols are T2 and open symbols are T1.

Fig. 13. The effective and 2D Debye temperatures against the film
thickness.
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5. Conclusions

A theoretical model is proposed in the present work in
order to define a proper effective Debye temperature for
low-dimensional materials under the size confinement
effect. The specific heat is first evaluated based on the con-
fined phonon dispersion relation, which is discrete in the
confined dimension(s) and continuous in the others. In
order to predict a same value for the specific heat by the
conventional Debye model, it is found the associated
Debye temperature must be adjusted and consequently is
different from the bulk counterpart. The resulting Debye
temperature is thus defined as the effective Debye tempera-
ture of the low-dimensional material under investigation.

The investigation shows the effective Debye temperature
of the mixed polarization associated with nanowires is
about half the longitudinal Debye temperature of bulk
materials at intermediate temperatures. The agreement
with the experimental observations [8] suggests maybe that
the measured Debye temperature is that of the mixed
polarization, instead of the bulk one, due to the small size
of the specimens. The effective Debye temperatures of the
mixed polarizations associated with thin films on the other
hand are about 28% less than the bulk longitudinal Debye
temperature. In the labs, the measured Debye temperature
of thin films is also not much different from the bulk one
[12]. At last, when the temperature is so low that there
are only several phonon modes excited, the low-dimen-
sional materials show two-dimensional behavior instead,
excluding the flexural polarization of the thin films (which
possesses one-dimensional behavior because of its para-
bolic dispersion relation at small dimensionless wave
numbers).
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